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The main result we are publishing is an 

improved formulation for diffraction control 

in certain circumstances.  In the paper we 

introduced a new formulation and showed 

how the improvement was sufficiently large 

to, for the first time, make occulters 

powerful enough to detect Earth-like planets 

with designs that can be implemented using 

today’s technology. 

Our improvement in capability is based 

on the well established Fresnel equations 

that were demonstrated in detail over 150 

years ago. Thus the suppression of 

diffraction can be demonstrated theoretically 

by reliable physics and mathematics. 

Because we chose to concentrate on the implications of the apodization for planet 

finding in the main paper, we have placed the mathematics in this supplemental 

document.  We show the mathematics lead to the conclusion of high contrast and we 

show the tolerances required are achievable. 

 

APODIZING MASKS 

The search for the solution to the high contrast occulter must be carried out with the 

full complexity of the Fresnel regime.  A Fraunhoffer solution implies that, to good 

 

Figure 1: The central Fresnel zone and the eight 
inner half zones are shown schematically. The 
dark star in the centre represents a mask that is 
confined to the region where the Fraunhoffer 
approximation can be used.  It is clear that such 
a mask will integrate out to a net positive 
contribution in the focal plane. 
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approximation, all the rays impinging upon the mask reach the axial position in the 

focal plane with the same phase. If one plots the Fresnel rings of the surface, as in 

Figure 1, one can see a Fraunhoffer solution would require the mask to be restricted to 

the central zone.  Consequently, there will always be some net positive contribution in 

the focal plane.  To achieve a net zero electric field in the focal plane, the integral must 

extend out of the central zone at least into the first negative half zone. 

The mathematical formulation of the Huygens-Fresnel principle can be found in 

most general optics textbooks (e.g. Hecht1) The law states that the electric field at some 

focal plane, a distance r from a plane aperture, illuminated by a uniform plane wave 

from infinity is given by: 

 

0 ikrE
E Ae dS

i rλ
= ∫∫          (1) 

where the integration is over the 

surface S.  E0 is the strength of the 

electric field of the radiation incident 

from infinity onto the surface and r is 

the distance from each point on the 

surface to the point in the focal plane 

that is being evaluated. k is the usual 

2π/λ and A is the apodization 

function on the occulter plane. 

Figure 2 defines our coordinate 

system.  F is the distance from mask 

to focal plane.  ρ  is the radius on the mask, and θ its angle.  s is the distance off axis on 

the focal plane. Then, following the usual Fresnel approximation for large F 
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Figure 2:  The coordinates of the system are 
shown.  The shade is to the right and its plane 
is de scribed by ρ  and θ .  The telescope is 
stationed in the plane to the left. We define the 
distance off axis as s . 
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It has been shown that in many cases of deep shadow apodization, a circularly 

symmetric apodization may be well approximated by a binary function that appears like 

petals of a flower2. We proceed under this assumption and later verify its 

appropriateness. In the case of a circularly symmetric apodization we can first integrate 

over angle, finding 
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If A(ρ ) is unity to some radius a, and zero beyond, and ikρ2/2F is small, then this 

integral leads to the familiar Airy disk that describes the point spread function of the 

typical diffraction-limited telescope. 

To evaluate the diffraction properties of a mask we must use the Fresnel integral, 

integrating over the entire area that is open to the sky. Since we are designing a mask 

that covers only a tiny solid angle around the direction to the star, we would need to 

perform an integral that sums the wavefronts over the entire sky.  This is clearly 

impractical, so we employ Babinet’s principle 1 to ease the mathematics. 

Babinet’s principle states that: 

 

0 1 2E E E= +          (4) 

 

where E0 is the electric field of the signal in the focal plane, unimpeded by a mask, E1 is 

the field at the focal plane obtained by integrating the Fresnel equations over the shape 

of the mask as if it were an aperture, and E2 is the field obtained by integrating over all 

directions outside the mask. 

If we assume our unimpeded wave has amplitude of one and phase of zero at the 

mask, then 

 

2 1
ikFE e E= −           (5) 
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We simply seek a solution to the Fresnel integral over the shape of the mask such 

that 

 

1
ikFE e=           (6) 

 

We seek a solution in which the electric field integrated over the aperture yields, over 

some region on the focal plane, the same strength it would have had without an 

aperture. 

For mathematical simplicity we confine ourselves to analysis of the on-axis (s=0) 

position. The width of the shadow is later calculated numerically from equation (3) as in 

Figure 2 of the main paper. When s is much smaller than F/kρ  across the mask, the 

Bessel function term remains close to one and equation (3) simplifies to 
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So we seek a solution such that 
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Equation (9) shows the difficulty of the problem.  The exponential term in the 

integral is a strong function of wavelength. The obvious solution to the problem is to 

make A(ρ) equal to the inverse function out to some radius a: 
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so that we need only solve  

 



5 

0

1
ak

d
F

ρ ρ =∫          (11) 

While that solution may be simple, it is impractical. Equation (10) describes a 

perfectly transmitting sheet that phase delays light as a function of radius.  

Unfortunately, even the slightest change in incident wavelength can create a complete 

collapse of the nulling. A binary apodization approximation to this device is the Fresnel 

zone plate. 

As is explained in the main paper, we have found a function that satisfies the 

requirements to high precision. The function is of the form: 
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( ) 1A ρ =
  for    ρ  < a 

 

To investigate this effect we have once again used the Fresnel integral as in equation 

(9) 
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To show this, we first perform a change of variable so that 
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k
F

τ ρ=
          (16) 

So we find 

 

22

22

0

1 1
n

ii

E e d e d
i i

τ τ αα τ
β

α

τ τ τ τ
 −∞ − 
 = +∫ ∫      (17) 

And 

22

22 11

n
ii

E e e d
i

τ τ αα
β

α

τ τ
 −∞ − 
 = − + ∫      (18) 

The next step is a change of variable to  

 

x τ α
β
−=

          (19) 

 

so that 
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Integration by parts then gives us  
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Therefore, equa tion (9) is satisfied except for a remainder term R. Returning to the 

coordinates of equation (17) we have 
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To evaluate this integral we once again integrate by parts: 
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where 
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The first term of (24) is identically zero when evaluated from α to ∞ , as will be any 

term that contains both the exponential and a term of positive power in (τ-α)/β. 

Equation (25) has three terms, each of which must be integrated in the second term of 

equation (24). The first term of equation (25) has a higher power in (τ-α)/β and as such 

will be a smaller term than the rest of R. The second term is similarly related to R itself, 

but is smaller by a factor of n/τ2. Thus, if β2>>n the third term will dominate.  If β2 is 

not larger than n  then the transmission rises so quickly near ρ=α+β that the shade will 

start to resemble a disk, and Poisson’s Spot will re-emerge.  

We proceed to integrate by parts and taking the dominant term until we finally reach 

a term that does not evaluate to zero, and we find 
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To approximate the value we consider that cosine terms vary rapidly and will 

integrate to a net of zero at some point in the first half cycle. That cycle will have a 

length of no more than 1/α. During this half cycle the second exponential term remains 

near one and the term in powers of τ will never exceed α (1-n).  So we can expect that 

 

1! 1 1 !n

n n n

n n
R
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−
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which tells us the accuracy to which the electric field can be suppressed. The square of 

R is approximately the contrast ratio to be expected in the deep shadow. There were 

many approximations made to achieve this result and they are only valid in certain parts 

of parameter space. A large number of small terms were dropped in the repeated 

integration by parts, which raises a concern as to the accuracy of equation (27). The 

validity of this formulation has been checked computationally and found to be 

reasonable when β2>>n.  

Again, we see that the optimally sized 

occulter will have α approximately equal 

to β. Also, to achieve high contrast, αn 

must be quite large. T his is clearly easier 

to achieve as n increases, explaining 

why the higher order curves give more 

compact solutions, just a few half zones 

wide.  If n gets too high, there are 

diminishing returns as n! rises and β 

approaches unity. Powers as high as 

n=10 or 12 can be practical. 

This analysis has been carried out for 

the on-axis position in the focal plane, 

but the telescope will have a significant size and the shadow must remain sufficiently 

deep at the mirror’s edge. We have not yet developed a mathematica l formulation for 

optimizing the starshade radius subject to a finite mirror size.  However, given the 

power-law nature of the shadow depth, designing a shade by replacing a and b with (a-

a

b
b

a a

b
b

a

 

Figure 3: A twelve petal version of the 
starshade is shown with Fresnel zones in 
the background.  
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R/2) and (b -R/2), where R is the mirror plus position tolerance radius, works well as a 

first approximation. Numeric evaluation of the diffraction integral is still required to 

accurately design the shadow width.  

 

BINARY APODIZATION 

 

Up to this point we have worked with circularly symmetric apodization functions. It 

was assumed that the starshade could be made partially transmitting as a function of 

radius.  While this is possible in theory, in practice a transmissive optic would ruin the 

ability to make the shadow very deep.  Any error in transmission percentage, any 

variation in thickness, or any internal reflection would cause scatter that is severe on the 

scale we require. The solution is to use a binary mask, essentially one that is made of 

opaque material, patterned to simulate the needed transmission function. Petals, tapered 

to mimic the transmission function can provide an adequate approximation to circularly 

symmetric. 

Because the opacity is complete out to some radius, the petals do not begin until that 

radius. Their widths taper in proportion to the apodization function, eventually reaching 

a sharp point where the exponential function has decreased the opacity to nearly zero.  

We can examine the effects of the petal approximation mathematically. Knowing 

that circularly symmetric apodization creates the dark shadow that is needed, we need 

only look at the difference between that integral and the integral over the petals. This 

remainder must be small. 

In the petal analysis we cannot perform the analysis on-axis and then extend to the 

surrounding areas because of circular symmetry. The integral around any circle that is 

centred on both the starshade and the direction to the source will be the same on axis, so 

even a single petal would lead to good performance at the central point.  For that reason 

we return to equation (2), the integral as it appears at a point on the x-axis, a distance s 

from the centre. Subtracting away the circularly symmetric form we can write the 

remainder as: 
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where A(ρ) is the circularly symmetric apodization function and A(ρ ,θ) is the binary 

petal version of the apodization function.  

Inspection of this integral shows that, as long as cosθ does not change by much 

across any one petal, the value of R will be small. Proper evaluation is complicated and 

has been performed with a computer for some typical cases of interest. Surprisingly, a 

few dozen petals usually suffices.  In some cases, the number of petals can be reduced 

as far as twelve without compromising the 10-10 required for planet finding. 

 

TOLERANCING 

 

So far, we have treated the starshade concept as a mathematical construct, without 

regard to whether it has any practical application.  If it is ever to be built, then the 

tolerances for fabrication must be investigated. Any device in which the tolerances are 

impractically tight would be of little value. Since the starshade concept is insensitive to 

wavelength and to rearrangement into petals, the presumption is that the tolerances will 

not be particularly difficult to achieve. 

In this section we address some of the more obvious kinds of errors that would be 

encountered in using a starshade. These errors are generic, and detailed tables of 

tolerances must await an actual design. 

For the purposes of this tolerance analysis we shall assume that the z-axis is the 

direction from the star to the starshade to the detector. Thus the starshade lies in the x-y 

plane. 

Lateral Position: For this we mean the position of the detector in the x-y direction 

relative to the line that extends from the source through the centre of the starshade. If 

the telescope drifts too far laterally it will start to leave the shadow.  This distance is set 

by the size of the shadow.  The depth of the shadow increases as one approaches the 

center, and the telescope must be smaller than the diameter of the region with sufficient 

contrast. This region becomes larger as the shade becomes larger and more distant. 

Thus, an optimized starshade would fit the shadow size to the telescope size.  So, a 

margin of 20% on the starshade size appears reasonable. Thus we simply choose ±0.1a 

as the constraint on lateral position. 
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Depth of Focus: By this we mean the position of the detector on the z-axis, the line 

from the star through the centre of the starshade. Because of the insensitivity of the 

design to scaling by wavelength, it is similarly insensitive to scaling by distance. 

Equation (27) relates the depth of the shadow to the distance, F , through the 

dimensionless parameters, α and β. Since each scales as the square root of wavelength 

times F, the tolerance on F is set by the tolerance on λ. At the long wavelength end, the 

performance of the starshade degrades rapidly, so the design actually starts with the 

long wavelength constraint.  Assuming that a ten percent degradation in wavelength is 

acceptable, so is a 10% change in distance. Since a typical design places the starshade at 

50,000km, the depth of focus is effectively 5000km, rather easy to implement. 

Rotational:  Because of the circular symmetry built into the design, there is no 

constraint on θz, the rotation angle about the line of sight. Sometimes it might be better 

to actually spin the starshade about this axis to smooth out residual diffraction effects. 

Pitch and Yaw:  Because of the rotational symmetry the constraint on errors in 

alignment about the pitch axis, θx and yaw axis, θy, may be combined into a single 

pointing error. It turns out that the design is highly forgiving of such errors, but the 

proof takes some calculation.  

We assume that the shade is out of alignment with the axis of symmetry by an angle 

ϕ  about the y-axis, such that the shade appears foreshortened in the x direction by a 

factor of cosϕ , which we shall approximate by 1-ε . The net optical path difference is 

small, about (a+b)θϕ 2/2 for small θ  and ϕ. As long as ϕ is <<1 the net path delay is a 

small fraction of a wavelength and may be ignored.  

We start by rewriting equation (2) for the on-axis (s=0) case in Cartesian coordinates 

with the integration now taking place over the projected area which is foreshortened in 

one dimension 
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By a change of coordinate to z=x/(1-ε) we have  
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where the integration is now over a circularly symmetric shape as before. Converting to 

polar coordinates we find 
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Converting to polar coordinates, expanding and ignoring terms in ε2 and higher, then 

differencing from the unperturbed integral we have an expression for the remainder 

caused by the misalignment: 
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Approximation of the exponentials in the brackets and dropping higher order terms 

reduces this to: 
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To evaluate this we use our usual change of variable: 
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and integrate by parts.  The higher order terms cancel as before, leaving us with an 

expression for the remainder 
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which is a form similar to that encountered in the original integral over the unperturbed 

aperture.  We may therefore conclude that, to first order,  

 

csRR ε=           (36) 

 

where Rcs is the remaining electric field in the original circularly symmetric case. We 

conclude that misalignments of axis have almost no effect.  They create a scale change 

in one axis that has no significant effect.  Many degrees of misalignment can be 

tolerated, but in a practical mission it is likely that control issues will dictate pointing to 

a few arcminutes anyway.  

Azimuthal Errors in Petal Shape:  When we gathered the apodization function into 

the petals to make the function binary, we significantly perturbed the distribution of the 

electric field in the azimuthal direction.  The total, when integrated over the circle at any 

given value of ρ , remained unchanged. Thus, within the azimuthal sector of width 2π/N 

radians at any fixed radius ρ , we are free to move the obscuration around.  Essentially, 

the starshade is insensitive to shear in the azimuthal direction.  We must simply keep the 

shear from slipping into the region of the adjacent petals. 

Radial Errors in Petal Shape:  If the petal is stretched or compressed such that the 

smoothness of the fall of the apodization is maintained, then there is little impact on the 

performance. This is reflected in the insensitivity to alignment, wherein the petals in 

some directions are changed in projected length, but there is no noticeable impact on 
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performance. Similarly the petal analysis shows that each petal independently creates its 

own deep shadow zone.  Hence, radial scaling of modest amounts does not hurt the 

performance. 

Truncation  of Petals:  Mathematically, the apodization carries out to infinity. In the 

case of a binary mask, this means that petals extend to infinity, something which clearly 

cannot be done in practice.  At what radius is it safe to truncate the petal? We can write 

the remainder of the electric field created by truncating at a radius T.   
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which is definitely less than 
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per petal. The remainder due to truncation can be safely ignored in a typical case when 

the thickness of each petal has fallen below about 0.1mm. Thus the petals must be sharp 

at their tips, but do not have to be controlled at a microscopic level. 

Area Change:  Finally we consider the case whe re the shape changes in a 

discontinuous manner. Since there are many possible classes of such error, we can only 

address them as a generality. Consider a petal that is missing a chunk along one edge. 

The missing part can be contained within one half zone or spread over several. To the 

extent that the missing area is monotonic across the zones, the net effect is less than the 

largest area within one half zone.  So, the size of the missing area must be less than 10-5 

of the starshade area, but can be substant ially larger if spread over several zones. 

Opacity:  The shade must be opaque to the needed level. If the star is to be 

suppressed to better than a ratio S, then the shade must transmit less than 1/S of the 

incident radiation 

Pinholes: The presence of pinholes can simulate a level of transparency. By the 

Fresnel integral we see that the area of the pinholes must represent 1/S of the area of the 
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starshade if uniformly distributed.  If contained in one zone, they must add up to less 

than 1/ S  of the area of that zone. 

Large Holes:  A single large hole can be restricted to a single zone. Since a zone has 

an area 

 

zA Fπλ=           (39) 

 

the hole must have an area less than 

 

Hole
FA
S

πλ<          (40) 

 

and for typical cases the area of the hole can be as large as a square centimetre, well 

within a practical range. 
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